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The Fourier spectrum of a singing wine glass
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(Received 21 May 2019; accepted 9 August 2019)

The phenomenon of the singing wineglass is familiar to many. Most people have run a finger along

the rim of a wine glass with the right speed and pressure to get it to whistle a tone or perhaps heard

a glass harmonica being played. However, have you ever noticed and wondered why the vibrations

caused by a finger on a glass produce a pulsating sound, rather than a steady, constant-amplitude

vibration? Further exploration reveals that the sound and pulsations of a wine glass vary depending

on the way the wine glass is stimulated. In this paper, we investigate and model the characteristic

sounds produced by three different cases: the pulsating sound exhibited by a finger run along the

rim of a wine glass, the steady tone produced by a stationary finger on a rotating wine glass, and

the decaying pulsations exhibited by a struck rotating wine glass. Analyzing the qualitative

differences among these three cases provides opportunities for students to hone experimental,

modeling, and data analysis skills in an intermediate level undergraduate experimental physics

course. VC 2019 American Association of Physics Teachers.

https://doi.org/10.1119/1.5124230

I. INTRODUCTION

The oscillations which occur through the distortion of the
rim of a vibrating wine glass have been well studied.1 The
physics of wine glass acoustics was first described by the
Nobel Laureate Lord Rayleigh in 1894.2 In his analysis of
the deformation of thin elastic shells, he found that the fre-
quency of vibration of a struck glass was the same as the fre-
quency produced by a finger run along the glass rim.2 The
vibration produced by a rotating finger is caused by friction
between the finger and glass rim producing tangential vibra-
tions in the glass most extreme at antinodes and correspond-
ingly into radial motion at nodes.2,3

The case of a finger on a rotating glass is further investi-
gated by Spurr, who describes how ringing is induced by a rub-
ber finger on a glass rim.3 According to his analysis, ringing
only occurs when a liquid lubricant is used, causing dynamic
friction between the rim of the glass and the rubber finger to
become less than the static friction. Ringing only occurs when
a lubricant is used along with a sufficiently high rotational
velocity of the finger, resulting in stick-slip behavior.

The principal modes of vibration occur via propagation of
bending waves around the glass rim, which define 2(nþ1)
stationary nodes and antinodes around the circumference,
with n being an integer number. The lowest harmonic is n
¼ 1, where the rim of the glass changes from circular to
elliptical twice per cycle. This harmonic typically produces
the dominant signal and is heard best. Fenkner found that the
modal frequency of this vibration is roughly proportional to
the glass thickness and inversely proportional to the square
of the glass radius and is roughly independent of the height
of the glass bell.4 These modes, also known as bell modes,
are similar to the vibrational modes of a flat plate and can be
analyzed using a modified version of Chladni’s law.5 Rather
than the modal diameters of a flat plate, however, nodes take
the form of meridians running vertically along the height of
the glass bell. In higher vibrational modes, nodal circles run-
ning along the glass bell’s circumference are also present.6

Through computational modeling and experiment, we
explore the phenomenon in which the vibrational nodal meri-
dians are not stationary relative to their initial position along
the rim of the wine glass. As a finger moves around the rim

of the glass, the region of maximum vibration follows the
finger, resulting in a sound that pulsates in a manner similar
to the beats generated by two different frequency sound sour-
ces.7 In the case of the rotating finger, the pulsation rate
depends upon the angular speed of the finger rather than the
frequency difference in the beat phenomena.

Upon deeper analysis, these phenomena are not surprising,
but are non-obvious and provide ample opportunities for
teaching students about standing waves, sound, interference,
and Fourier Transforms in undergraduate labs for physics
majors or engineering students. We believe that this paper
highlights an area of acoustics that can be both instructive
and thought provoking in the context of experimental phys-
ics education.

II. EXPERIMENTAL SETUP

To study this phenomenon quantitatively, wine glass spin-
ners were designed that allowed us to control the frequency
of rotation in two different configurations.

A. Rotating finger

The first setup rotated the finger, while the wine glass (we
used a wine glass with a 4.0 cm radius at the rim of the glass)
remains stationary. As a substitute for a real finger, we
mounted a piece of stiff rubber tubing to the turntable on a
vertical metal rod (see Fig. 1). We manually adjusted the
speed of rotation of the rubber finger and its pressure on the
glass rim in order to achieve a steady tone.

B. Rotating glass

The second piece of apparatus used a wine glass mounted
to a turntable (see Fig. 2). The angular speed of the turntable
was controlled with a variable power supply, while a station-
ary finger was pressed to the rim of the spinning glass to pro-
duce a tone. Additionally, instead of a stationary finger held
to the rotating glass, a pencil was used to tap the glass as it
rotated, which created a tone that decayed after a few sec-
onds. Two microphones positioned radially in the plane of
the glass rim recorded the tone.
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For both setups, we used Vernier microphones and rotary
motion sensors with LoggerPro to collect the sound and rota-
tional speed data.8 The low noise Turnigy Power Systems
gimbal motor 5208 was connected to a speed control unit
and a DC power supply.

III. EXPERIMENTAL DATA

A. Rotating real finger

The first experiment uses a real finger rotating around the
rim of a stationary wine glass to produce a tone with a funda-
mental frequency of 488.8 Hz that is picked up by two radi-
ally positioned microphones coplanar with the glass rim and
azimuthally offset by 45� from each other. In our case, the
recorded signals between the two microphones were found
to have a p phase offset, independent of frequency. This off-
set was time invariant allowing us to investigate the differ-
ences between in-phase and out-of-phase behavior between
the waveforms of the two signals. (When conducting this
part of the experiment, students need to make sure that they
investigate the relative phase of their two microphones, for
example, by placing them next to each other far from a

known signal frequency source.) The resulting beat-like phe-
nomenon is illustrated in Fig. 3, which depicts the envelope
of the amplitude modulated signals picked up by the two
microphones. Average amplitudes recorded by each micro-
phone are normalized to the same level for all following data
except Figs. 9 and 10. Figure 3 clearly depicts exactly out of
phase sound patterns between the two microphones.

A difference in phase can also be observed between the
two waveforms, depending on which part of the sound enve-
lope is chosen. The phase shift switches between 0 and p
each time either of the waves’ amplitudes pass a minimum.
Figure 4 illustrates one of these cases in a small time interval
of the signals shown in Fig. 3.

In Fig. 4, the two waves are completely out of phase
before 3.76 s and become in phase shortly after the minimum
past 3.76 s. This minimum, therefore, is the dividing line
between the two phase shifts. Similar transitions can be
observed each time a minimum of either signal is passed.

B. Rotating rubber finger

In the second experiment, we observe the sound picked up
by two microphones when the rubber finger slides around the
rim of the glass at a constant speed, as shown in Fig. 1. This
experiment serves to investigate the relationship between the
pulsating sound and the angular speed of the stimulating
rotating finger.

When the microphones are positioned 45� apart, the sig-
nals picked up by the two receivers have sound amplitude
patterns that are completely out of phase (see Fig. 5). A sec-
ondary amplitude pattern with a period of four times the
main amplitude pattern is also visible.

Next, the microphones are repositioned to form a 90� angle,
with both pointing towards the center of the glass. When the
microphones are positioned 90� apart, the signals show pulsa-
tion sound patterns that are in phase. Figures 5 and 6 reveal a
relationship between the microphones’ separation angle and
the phase shift of the observed amplitude oscillation.

The Fourier spectrum of the experimental finger rotation
data shown in Fig. 7 reveals two major frequency peaks at
486.9 Hz and 490.2 Hz. Two pairs of smaller side peaks
accompany each of the larger peaks symmetrically on either
side at 486.0 Hz, 487.8 Hz, 489.4 Hz, and 491.0 Hz. These

Fig. 1. Vibrations are produced by a rubber finger rotated around a station-

ary glass rim at a variable speed.

Fig. 2. Vibrations are produced by the pressure of an actual finger on the rim

of a glass spun with a variable-speed turntable while the finger is stationary.

Alternatively, decaying vibrations are produced when the spinning glass is

tapped with a pencil.

Fig. 3. Sound signals from a wet finger rotating around the rim of a wine

glass. The signals are measured by two microphones offset by 45�. The

boxed region is examined in more detail in Fig. 4.

Fig. 4. Waveforms from two microphones offset by 45� centered on the

amplitude zero of the solid-line signal occurring at approximately 3.76 s.
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symmetric side peaks occur consistently across all rotating-
finger data runs with a pronounced 4-pulse secondary oscilla-
tion (as in Fig. 5). Besides these peaks, miscellaneous small
signals and noise are created by other minor resonances of
the glass and do not appear consistently in all of our
rotating-finger data. Therefore, we conclude that they are not
significant to the phenomena of interest. Importantly, we
observe that the difference between the two major frequency
peaks—3.3 Hz or 20.7 rad/s—is four times the rotational fre-
quency of the glass, which in this case was 5.18 rad/s. This
factor of four was observed in all rotating-finger data runs, at
a variety of rotational speeds.

C. Rotating glass with a stationary finger

When the glass rotates instead of the finger, we observe
something different. In this case, a real finger can be used, or
the rubber finger can be held stationary relative to the glass
rim.

Unlike the case with the rotating finger, Fig. 8 shows a
sound intensity that is not characteristic of a beat-like signal.
The periodic fluctuations in both amplitudes correspond to the
slight variations in pressure by the imperfectly flat rim of the
glass as it rotates on the stationary finger and scales with
the rotational speed of the glass. In contrast to the paired fre-
quencies of similar magnitude observed with a rotating finger,
the fundamental resonance of 488.8 Hz remains the predomi-
nant frequency in the Fourier spectrum for this case. The
Fourier spectrum shown in Fig. 9 also depicts several pairs of
symmetrc side peaks at a variety of magnitudes. The closest
pairs are spaced roughly 1.56 Hz (or 9.80 rad/s) away from the
fundamental frequency peak, corresponding to the rotational
speed of the glass causing periodic pressure and amplitude var-
iation. Other peak pairs are spaced at integer multiples of the
rotational frequency away from the main peak, indicating an
unevenness of the glass rim that oscillates more than once
along its circumference. Various small peaks likely correspond
to low frequency amplitude variation caused by inconsistancy

in pressure by the finger on the glass rim due to difficulty in
keeping the finger perfectly stationary.

D. Struck rotating glass

Our third scenario used a glass that was struck with a pen
as it rotated on the turntable, creating a decaying signal.

We can observe from the Fourier spectrum in Fig. 11 that
the two largest frequency peaks are 4.0 Hz apart, indicating
that the pulsation frequency in Fig. 10 is 4.0 Hz. Unlike the
frequency factor of four times the glass’s rotational fre-
quency determined from Figs. 5 and 7, we find that the pulsa-
tion frequency in the struck glass case is only 2.24 times the
glass’s rotational frequency of 11.24 rad/s or 1.79 Hz.

IV. DISCUSSION

A. Interference and standing waves

When sinusoidal signals of two different frequencies are
added together, the resultant beat frequency is exactly equal
to the difference in frequency between the two signals. In the
case of the rotating finger, we observe the converse: that a
signal demonstrating a pulsating pattern of variations in
intensity will have a Fourier spectrum containing two fre-
quencies separated by the frequency of the original signal, as
observed in Figs. 7 and 11. Rather than adding two different
frequency signals together to obtain beats, the sound inten-
sity fluctuations are instead created through interference. As
the signals from the rotating wineglass antinodes interfere,
they create a pulsating signal from which the two frequencies
can be extracted.

The physical explanation for the results found in the case
of the rotating finger arises from the rotation of the nodes
and antinodes around the glass rim with respect to the two
microphones. The four sources are thought to produce sound
waves in the direction of vibrational motion of the wine glass
rim. At the four antinode points, the wine glass rim moves in

Fig. 5. 45� microphone offset—finger rotating at 5.18 rad/s.

Fig. 6. 90� microphone offset—finger rotating at 6.97 rad/s.

Fig. 7. Fourier spectrum corresponding to the Fig. 5 data.

Fig. 8. 45� microphone offset: rotating glass at 9.80 rad/s.
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the radial direction only. Therefore, with a moving finger in
Fig. 12, the plane waves produced by the black antinode pair
are orthogonal to the orientation of the microphone and
therefore do not contribute to the total signal.

The gray antinode pair in Fig. 12, on the other hand, inter-
feres to an extent determined by the wavelength of sound
produced, as well as the L1 and L2 path lengths to create a
net signal at the microphone.

When the four antinodes are rotated by an angle of p/4, as
in Fig. 13, the pair of sources corresponding to the equivalent
L1 and L2 distances destructively interfere completely at the
microphone due to the p offset between the waves produced
by the gray and black sources. Likewise, the two sources cor-
responding to the equivalent L3 and L4 distances also
destructively interfere, resulting in a net zero signal ampli-
tude at the microphone in the Fig. 13 orientation.

Therefore, as the four antinodes of the first harmonic rotate
around the glass rim, the signal amplitude picked up by the
microphone cycles between some positive amplitude A and
zero as a function of time. Differences in phase between the
two microphones, then, vary as a function of their azimuthal
angular displacement around the wine glass, with an angle of
45� corresponding to a sound intensity phase shift of p.

On the short time scales illustrated in Fig. 4, phase shifts of
0 or p in the waveforms result from the fact that the two anti-
node pairs produce signals that are out of phase. Amplitude
zeroes occur in the Fig. 13 orientation, whereas amplitude
maxima occur in the Fig. 12 orientation, with signs deter-
mined by which antinode pair is alligned with the receiver.
Therefore, an arc traced between consecutive positive and
negative maxima must go through a negative amplitude area,
a zero point, and a positive amplitude area. If two receivers
positioned 45� apart reside in oppositely signed amplitude
areas, the signs of the signals picked up by the two are oppo-
site to each other (or shifted by 90�). Conversely, if both
microphones reside in amplitude areas of the same sign, the
two signals are in phase. Transitions between these two cases

occur only when one of the receivers passes a zero-amplitude
point, changing its signal amplitude’s sign.

B. Rotating rubber finger

Students can develop and code models of different com-
plexities to simulate these experiments. Here, we will show
that even a simple model that can be easily implemented by
students with minimal programming experience can be of
great use to analyze a complicated system. To construct a
model of the singing wine glass in Mathematica, we approxi-
mate antinodes as point sources, neglect all resonant frequen-
cies except the fundamental, and assume that the amplitude
A of sound emitted from each source remained constant. The
largest sound intensity is emitted at the antinodes, and our
simplified model ignores the other vibrating sections of the
glass and approximates the system as the sum of the sound
emitted by these four antinodes. We also treat the rim as the
only part of the glass that oscillates, with sound waves being
emitted from only the four antinode points on the rim. We do
not include directivity in this simple model and assume that
sound is emitted from each of the four antinode sources
isotropically.

As illustrated in Fig. 14, the model uses four point sources
spaced 90� apart on the circumference of a glass rim of
radius R. We also neglect the inverse square decay of sound
over distance in this simple model. The sources emit sound
waves at the measured primary resonant frequency of the
glass and rotate around the glass rim with the angular speed
x (in rad/s) of the rotating finger.

The horizontal and vertical distances between the micro-
phone and each of the four point sources on the rim are defined
in terms of R and r, where r is the distance between the center
of the glass and the microphone. The sources are indexed
m ¼ 1 through 4 in counterclockwise order (see Fig. 13). We
assume the microphone points toward the center of the glass,
along the x-axis in the plane of the rim. The x and y distances
between source m and microphone 1 vary sinusoidally with

Fig. 11. Fourier spectrum of the signal in Fig. 10.

Fig. 12. Gray and black antinode pairs with no angular offset.

Fig. 9. Fourier spectrum of the Fig. 8 data showing a peak at the fundamen-

tal frequency of 488.8 Hz, accompanied by symmetric side peaks.

Fig. 10. 45� microphone offset: struck rotating glass at 11.24 rad/s.
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time, t, based on the rotational speed, x, of the sources along
the rim,

xm tð Þ ¼ r � R cos xtþ mþ 1ð Þp
2

� �
; (1)

ym tð Þ ¼ R sin xtþ m� 1ð Þp
2

� �
: (2)

We find the four distances dm from their corresponding x
and y displacements.

The contributions of the sound signals from each of the
four antinodes can be calculated, where sm is the signal
intensity due to the mth antinode source of amplitude A, the
wavelength is k at the fundamental frequency f, and S is the
total summed signal intensity,

sm tð Þ ¼ A cos
2pdm

k
þ mpþ 2pft

� �
; (3)

S tð Þ ¼
X4

m¼1

sm tð Þ: (4)

We add a phase shift of p to the signals of the m ¼ 1 and 3
sources to distinguish between the antinode pairs m ¼ {1,3}
and m ¼ {2,4}.

To model the waveform plot, we add the four signal con-
tributions together as a function of time [Eq. (4)] and gener-
ate a fast Fourier frequency spectrum of the total simulated
signal.

To simulate the secondary amplitude variation that is most
visible in the Fig. 5 data, we multiply the total signal S(t) by
a sinusoidal factor r(t) with the same frequency as the rota-
tional speed of the finger and a secondary amplitude a,

r tð Þ ¼ 1� a sin xtð Þ: (5)

The experimental and model datasets in Figs. 5 and 15
agree very closely, with both exhibiting a pulsation fre-
quency of 3.3 Hz. Students can also investigate how chang-
ing the azimuthal location of the microphone causes a shift
in the signal’s phase. This model also simulates the presence
of a secondary pulsating envelope in the experimental data
which repeats every fourth pulsation. We assume this signal
to be due to the slight pressure variation by the rubber finger
caused by the imperfectly flat nature of the glass rim.

In Fig. 16, we calculate the frequency spectrum of the
model data from Fig. 15. From Fig. 16, the spectrum reveals
a difference of 3.30 Hz between the two peaks in the Fourier
spectrum. The frequency of 3.30 Hz models with the mea-
sured pulsation frequencies from Figs. 5 and 7. Similar to the
relationship between beats and constituent frequencies, the
distance between major peaks will scale exactly with the
measured pulsation frequency. Students can use this type of
experimental setup to find that the pulsation frequency
indeed scales with the rotational speed of the glass as pre-
dicted by the simple model.

In both the experimental and modeled Fourier spectra (see
Figs. 7 and 16), there are two pairs of small side peaks

Fig. 14. A diagram of the experimental setup with important quantities

labeled. R is the radius of the wine glass, r1 and r2 are the radial coordinates

of the two microphones, and u is the azimuthal displacement between the

two microphones. The large numbered gray and black dots correspond to the

two out-of-phase antinode pairs, and the small black dots correspond to sta-

tionary nodes. Arrows illustrate the rotation of the nodes and antinodes

around the glass, and dotted ellipses illustrate the exaggerated bending of

the glass.

Fig. 15. An example model waveform using the values R ¼ 4.0 cm, r ¼ 8.0 cm,

f ¼ 488.8 Hz, a ¼ 0.15, and x ¼ 5.18 rad/s. The parameters were chosen to

closely model to the experimental data in Fig. 5. The boxed region is examined

in more detail in Fig. 17.

Fig. 13. Gray and black antinode pairs offset by an angle of p/4.

Fig. 16. The Fourier spectrum for one set of simulated data shown in Fig. 15.
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located symmetrically on either side of the two major peaks
with an average distance of 0.85 Hz. This distance is approx-
imately one quarter of the 3.3 Hz distance between the two
major frequency peaks. This observation corresponds to the
secondary sound amplitude variation which can be most eas-
ily seen in Fig. 5, in which sound intensity increases and
decreases cyclically with a period corresponding to the rota-
tional speed of the finger.

The model also accurately predicts phase shifts in the
waveform. As shown in Fig. 4, the waveform phase shifts
switch between 0 and p every time each signal amplitude
passes a minimum. This can also be seen in Fig. 17, in which
a short time interval is examined near a simulated amplitude
minimum occuring at 2.426 s.

Upon passing the zero of the solid-line signal amplitude,
the two waveforms abruptly switch from completely out of
phase to in phase. Opposite transitions occur from in phase
to out of phase behavior at minima of the dashed signal.
While these phase transitions can occur over the span of sev-
eral milliseconds in the experimental data, the idealized
model data show these transitions distinctively without the
experimental noise.

C. Rotating glass with a stationary finger

When the glass rotates rather than the finger, as in Fig. 8, a
signal is produced that is not indicative of a beat-like sound,
with a Fourier spectrum that includes only the fundamental res-
onance as its primary peak. This indicates that the nodes
around the glass rim are stationary relative to the finger and
microphones and do not rotate. The simple model would there-
fore result in a single Fourier peak at the fundamental fre-
quency with an amplitude which is dependent on the angular
distance of the microphone from the glass rim. Experimentally,
slight periodic variation in amplitude creates symmetric peak
pairs at integer multiple distances from the main peak, arising
from periodic variation in the height of the glass rim, and
therefore, finger pressure and amplitude. Other inconsistences
in amplitude are caused by ambient noise and slight variations
in the pressure on the rim arising from the difficulty of keep-
ing one’s finger pressure on the rim the same throughout.
An additional setup or theoretical discussion about changing
reference frames could explore the following case: A micro-
phone rotating at the same rate as the wine glass with a sta-
tionary finger stimulating the wine glass to vibrate. With both,
the wine glass and the microphone, being transferred in the
same rotating reference frame, the pulsating sound pattern
would reemerge.

D. Struck rotating glass

In the case of the struck rotating glass, a decaying pulsat-
ing sound pattern should be observed. According to G. H.
Bryan, however, this case should produce nodes and antino-
des that, instead of rotating with the glass, rotate at 3/5 the
angular speed of the body.9 This factor of 3/5 is known as
Bryan’s factor, which is defined as the ratio of the angular
speed of the vibrational pattern to the angular speed of the
vibrating body—in this case, a wine glass.10 We observed in
Figs. 10 and 11 that the data agree with Bryan’s prediction.
If the nodes and antinodes rotated with the body, four pulsa-
tions would be heard per revolution of the glass, which
would result in a pulsation frequency of 7.16 Hz. The fre-
quency measured from Fig. 10 is 4.0 Hz, 55.9% of 7.16 Hz,
which is close to Bryan’s factor of 3/5.

While a factor of approximately 3/5 can be expected for
rotating wine glasses, Bryan’s factor is not constant for all
resonators and depends on a variety of factors, including the
resonator’s stiffness and geometry, as well as boundary condi-
tions.11 Bryan’s factor has been found to depend on the inte-
grated tangential and radial displacements over the length of
the resonator.12 Using this fact, Loveday and Rogers have
determined that Bryan’s factor of a resonating cyllinder can
be decreased by restricting the vibration of either or both
ends, thereby reducing total tangential motion. Additionally,
it has been found that Bryan’s factor can also be reduced by
increasing the axial and rotational stiffness of the object, indi-
cating that both composition and geometry play a significant
role in the value of Bryan’s factor for a particular resonator.12

Bryan’s factor has an interesting application to aerospace
engineering, in which such vibrations are used in gyroscopes.
Linking the physics of a vibrating wine glass to modern tech-
nology used in space travel can be a surprising and exiting
connection for students. Specifically, hemispherical resona-
tor gyroscopes (or HRGs) detect rotation in the same way
that we have observed—using the frequency of the acousti-
cal varations of a flexing hemisphere to gauge rotational
speed.13 Since the pulsations of the HRG are not alligned
with its rotational speed, rotational speed can be determined
by a sensor constrained to the same rotating reference frame
as the resonator itself. Since their invention, HRGs have
become the rotation sensors of choice for many aerospace
applications due to their high accuracy and reliability, being
first utilized in the NEAR program, as well as the NASA
Cassini mission to Saturn launched in 1997.

V. CONCLUSION

In conclusion, we have observed that a finger rotating on
the rim of a wine glass creates a beat-like tone, whereas a
stationary finger on a rotating glass does not. We have shown
through theory and modeling that the pulsating sound pat-
terns in the tone created by a finger on the rim of a wine
glass can be approximated by the interference between the
four antinode sources rotating around the glass rim in two
p/2 offset pairs. This interference pattern rotates at the speed
of the finger, causing regions of maximum and minimum
amplitude to rotate past each microphone periodically, creat-
ing a pulsating sound intensity pattern. We have also shown
that the difference between the rotational speed of the glass
and the standing wave pattern in the case of a tapped rotating
glass can be easily reproduced in an undergraduate lab.

Fig. 17. Simulated data from Fig. 15 with waveforms from two microphones

offset by 45� centered on an amplitude zero of the solid-line signal.
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The phenomenon of rotating nodes and antinodes is rich
in physics concepts that provide ample opportunities for lab
projects for undergraduate physics or engineering students
learning about acoustics, wave interference, Fourier spectra,
and computational modeling.
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